Incorporating emotion for response generation in multi-turn dialogues
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
https://link.springer.com/content/pdf/10.1007/s10489-021-02819-z.pdf
Reference35 articles.
1. Asghar N, Poupart P, Hoey J et al (2018) Affective neural response generation. In: Advances in Information Retrieval - 40th European Conference on Research, pp 154–166. https://doi.org/10.1007/978-3-319-76941-7_12
2. Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and translate. In: 3rd International Conference on Learning Representations. arXiv:1409.0473
3. Bottou L, Curtis FE, Nocedal J (2018) Optimization methods for large-scale machine learning. SIAM Rev 60:223–311. https://doi.org/10.1137/16M1080173
4. Dziri N, Kamalloo E, Mathewson KW et al (2018) Augmenting neural response generation with context-aware topical attention. CoRR arXiv:1811.01063. https://doi.org/10.18653/v1/w19-4103
5. Ghosh S, Chollet M, Laksana E et al (2017) Affect-lm: Neural language model for customizable affective text generation. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pp 634–642. https://doi.org/10.18653/v1/P17-1059
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. CLICK: Integrating Causal Inference and Commonsense Knowledge Incorporation for Counterfactual Story Generation;Electronics;2023-10-08
2. DialogCIN: Contextual Inference Networks for Emotional Dialogue Generation;Applied Sciences;2023-07-26
3. EmoUS: Simulating User Emotions in Task-Oriented Dialogues;Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval;2023-07-18
4. Joint Syntax-Enhanced and Topic-Driven Graph Networks for Emotion Recognition in Multi-Speaker Conversations;Applied Sciences;2023-03-10
5. An Infrastructure for Studying the Role of Sentiment in Human-Robot Interaction;Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3