Drug-target interaction prediction via an ensemble of weighted nearest neighbors with interaction recovery
Author:
Funder
Flemish Government
China Scholarship Council
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
https://link.springer.com/content/pdf/10.1007/s10489-021-02495-z.pdf
Reference66 articles.
1. Ezzat A, Wu M, Li XL, Kwoh CK (2018) Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey. Brief Bioinform 20(4):1337–1357. https://doi.org/10.1093/bib/bby002
2. Chen R, Liu X, Jin S, Lin J, Liu J (2018) Machine learning for drug-target interaction prediction. Molecules 23(9):2208. https://doi.org/10.3390/molecules23092208
3. Dickson M, Gagnon JP (2004) Key factors in the rising cost of new drug discovery and development. Nat Rev Drug Discov 3(5):417–429. https://doi.org/10.1038/nrd1382
4. Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL (2010) How to improve RD productivity: he pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9(3):203–214. https://doi.org/10.1038/nrd3078
5. Jacob L, Vert JP (2008) Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics 24(19):2149–2156. https://doi.org/10.1093/bioinformatics/btn409
Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Drug–target interaction prediction based on improved heterogeneous graph representation learning and feature projection classification;Expert Systems with Applications;2024-10
2. GraphormerDTI: A graph transformer-based approach for drug-target interaction prediction;Computers in Biology and Medicine;2024-05
3. HiGraphDTI: Hierarchical Graph Representation Learning for Drug-Target Interaction Prediction;Lecture Notes in Computer Science;2024
4. Integrative approach for predicting drug-target interactions via matrix factorization and broad learning systems;Mathematical Biosciences and Engineering;2024
5. A Comparative Analytical Review on Machine Learning Methods in Drugtarget Interactions Prediction;Current Computer-Aided Drug Design;2023-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3