AdaDeepStream: streaming adaptation to concept evolution in deep neural networks

Author:

Chambers LorraineORCID,Gaber Mohamed Medhat,Ghomeshi Hossein

Abstract

AbstractTypically, Deep Neural Networks (DNNs) are not responsive to changing data. Novel classes will be incorrectly labelled as a class on which the network was previously trained to recognise. Ideally, a DNN would be able to detect changing data and adapt rapidly with minimal true-labelled samples and without catastrophically forgetting previous classes. In the Online Class Incremental (OCI) field, research focuses on remembering all previously known classes. However, real-world systems are dynamic, and it is not essential to recall all classes forever. The Concept Evolution field studies the emergence of novel classes within a data stream. This paper aims to bring together these fields by analysing OCI Convolutional Neural Network (CNN) adaptation systems in a concept evolution setting by applying novel classes in patterns. Our system, termed AdaDeepStream, offers a dynamic concept evolution detection and CNN adaptation system using minimal true-labelled samples. We apply activations from within the CNN to fast streaming machine learning techniques. We compare two activation reduction techniques. We conduct a comprehensive experimental study and compare our novel adaptation method with four other state-of-the-art CNN adaptation methods. Our entire system is also compared to two other novel class detection and CNN adaptation methods. The results of the experiments are analysed based on accuracy, speed of inference and speed of adaptation. On accuracy, AdaDeepStream outperforms the next best adaptation method by 27% and the next best combined novel class detection/CNN adaptation method by 24%. On speed, AdaDeepStream is among the fastest to process instances and adapt.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3