1. Liang S, Li Y, Srikant R (2018) Enhancing the reliability of out-of-distribution image detection in neural networks. In: Proceedings of ICLR, Vancouver, BC, Canada. https://openreview.net/forum?id=H1VGkIxRZ
2. Hsu Y, Shen Y, Jin H, Kira Z (2020) Generalized ODIN: detecting out-of-distribution image without learning from out-of-distribution data. In: Proceedings of CVPR, Seattle, WA, USA, pp 10948–10957. https://doi.org/10.1109/CVPR42600.2020.01096
3. Ren J, Liu PJ, Fertig E, Snoek J, Poplin R, DePristo MA, Dillon JV, Lakshminarayanan B (2019) Likelihood ratios for out-of-distribution detection. In: Proceedings of NeurIPS, Vancouver, BC, Canada, 32:14680–14691. https://proceedings.neurips.cc/paper/2019/hash/1e79596878b2320cac26dd792a6c51c9-Abstract.html
4. Lee K, Lee K, Lee H, Shin J (2018) A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In: Proceedings of NeurIPS, Montréal, Canada 31:7167–7177. https://proceedings.neurips.cc/paper/2018/hash/abdeb6f575ac5c6676b747bca8d09cc2-Abstract.html
5. Zheng Y, Chen G, Huang M (2020) Out-of-domain detection for natural language understanding in dialog systems. IEEE/ACM Trans Audio, Speech and Lang Proc 28:1198–1209. https://doi.org/10.1109/TASLP.2020.2983593