Detecting unusual input to neural networks

Author:

Martin JörgORCID,Elster Clemens

Abstract

AbstractEvaluating a neural network on an input that differs markedly from the training data might cause erratic and flawed predictions. We study a method that judges the unusualness of an input by evaluating its informative content compared to the learned parameters. This technique can be used to judge whether a network is suitable for processing a certain input and to raise a red flag that unexpected behavior might lie ahead. We compare our approach to various methods for uncertainty evaluation from the literature for various datasets and scenarios. Specifically, we introduce a simple, effective method that allows to directly compare the output of such metrics for single input points even if these metrics live on different scales.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Reference32 articles.

1. Bansal P (2019) Intel image classification. Available on https://www.kaggle.com/puneet6060/intel-image-classification, Online; accessed 20th April 2020

2. Cortes C, Jackel LD, Chiang W-P (1995) Limits on learning machine accuracy imposed by data quality. In: Advances in neural information processing systems, NIPS, pp 239–246

3. Amodei D, Olah C, Steinhardt J, Christiano P, Schulman J, Mané D (2016) Concrete problems in ai safety. arXiv preprint arXiv:1606.06565

4. Zhang M (2015) Google Photos Tags Two African-Americans As Gorillas Through Facial Recognition Software. Forbes

5. Marcus G (2018) Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3