An automatic hyperparameter optimization DNN model for precipitation prediction
Author:
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangxi Zhuang Autonomous Region
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
https://link.springer.com/content/pdf/10.1007/s10489-021-02507-y.pdf
Reference45 articles.
1. He X, Guan H, Zhang X, Simmons CT (2014) A wavelet-based multiple linear regression model for forecasting monthly rainfall. Int J Climatol 34(6):1898–1912
2. Kumar A, Tyagi N (2016) Comparative analysis of backpropagation and RBF neural network on monthly rainfall prediction. In: IEEE international conference on inventive computation technologies (ICICT), pp 1-6
3. Panaligan D, Razon JA, Caro J, et al (2016) Using machine learning to provide rapid rainfall forecasts based on radar-derived data. In: workshop on computing: Theory & Practice (WCTP), pp 117-131
4. Yang TC, Yu PS, Lin KH, Kuo CM, Tseng HW (2018) Predictor selection method for the construction of support vector machine (SVM)-based typhoon rainfall forecasting models using a non-dominated sorting genetic algorithm. Meteorol Appl 25(4):510–522
5. Meyer H, Kühnlein M, Appelhans T, Nauss T (2016) Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals. Atmos Res 169:424–433
Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Flood Susceptibility Assessment in Urban Areas via Deep Neural Network Approach;Sustainability;2024-08-29
2. Evaluation of precipitation forecasting methods and an advanced lightweight model;Environmental Research Letters;2024-08-02
3. Optuna-DFNN: An Optuna framework driven deep fuzzy neural network for predicting sintering performance in big data;Alexandria Engineering Journal;2024-06
4. DDTCN: Decomposed dimension time-domain convolutional neural network along spatial dimensions for multiple long-term series forecasting;Applied Intelligence;2024-04
5. Multivariate time series forecasting of daily urban water demand using reinforcement learning and gated recurrent unit network;Proceedings of the 2024 7th International Conference on Data Storage and Data Engineering;2024-02-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3