Joint label-specific features and label correlation for multi-label learning with missing label
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
https://link.springer.com/content/pdf/10.1007/s10489-020-01715-2.pdf
Reference42 articles.
1. Zhou H, Zhao H, Zhang Y (2020) Nonlinear system modeling using self-organizing fuzzy neural networks for industrial applications[J]. Appl Intell:1–16
2. Bencherif A, Chouireb F (2019) A recurrent TSK interval type-2 fuzzy neural networks control with online structure and parameter learning for mobile robot trajectory tracking[J]. Appl Intell 49(11):3881–3893
3. de Campos SPV, Guimaraes AJ, Araujo VS et al (2019) Incremental regularized Data Density-Based Clustering neural networks to aid in the construction of effort forecasting systems in software development[J]. Appl Intell 49(9):3221–3234
4. Bae JS, Oh SK, Pedrycz W et al (2019) Design of fuzzy radial basis function neural network classifier based on information data preprocessing for recycling black plastic wastes: comparative studies of ATR FT-IR and Raman spectroscopy[J]. Appl Intell 49(3):929–949
5. Ciarelli PM, Oliveira E, Salles EOT (2014) Multi-label incremental learning applied to web page categorization. Neural Comput Appl 24(6):1403–1419
Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Discriminative label correlation based robust structure learning for multi-label feature selection;Pattern Recognition;2024-10
2. Label distribution learning by utilizing common and label-specific feature fusion space;International Journal of Machine Learning and Cybernetics;2024-09-04
3. Sparse low-redundancy multilabel feature selection based on dynamic local structure preservation and triple graphs exploration;Expert Systems with Applications;2024-05
4. Multi-Label Learning with Label-Specific Feature Selection via Local Positive and Negative Correlation;2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT);2024-03-29
5. Multi-Label Learning with Missing Labels Using Scaled Model Coefficients for Feature Relevance;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3