The design of error-correcting output codes based deep forest for the micro-expression recognition
Author:
Funder
National Natural Science Foundation of China
Key Technologies Research and Development Program
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
https://link.springer.com/content/pdf/10.1007/s10489-022-03590-5.pdf
Reference71 articles.
1. Ben X, Jia X, Yan R, Zhang X, Meng W (2018) Learning effective binary descriptors for micro-expression recognition transferred by macro-information. Pattern Recogn Lett 107:50–58
2. Zong Y, Zheng W, Cui Z, Zhao G, Hu B (2020) Toward bridging microexpressions from different domains. IEEE Trans Cybernetics 50(12):5047–5060
3. Rolls E, Ekman P, Perrett D, Ellis H (1992) Facial expressions of emotion: an old controversy and new findings: discussion. Philosophical Trans Royal Soc London Series B 335:69–69
4. Wu Q, Shen X, Fu X (2011) The machine knows what you are hiding: an automatic micro-expression recognition system. In international conference on affective computing and intelligent interaction. 2011. Springer
5. Hurley CM, Anker AE, Frank MG, Matsumoto D, Hwang HC (2014) Background factors predicting accuracy and improvement in micro expression recognition. Motiv Emot 38(5):700–714
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. JGULF: Joint global and unilateral local feature network for micro-expression recognition;Image and Vision Computing;2024-07
2. Microexpression recognition model based on non negative matrix decomposition in intelligent classroom;Intelligent Systems with Applications;2024-06
3. Multi-view uncertainty deep forest: An innovative deep forest equipped with uncertainty estimation for drug-induced liver injury prediction;Information Sciences;2024-05
4. An adaptive error-correcting output codes algorithm based on gene expression programming and similarity measurement matrix;Pattern Recognition;2024-01
5. ULME-GAN: a generative adversarial network for micro-expression sequence generation;Applied Intelligence;2023-12-14
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3