Social-RippleNet: Jointly modeling of ripple net and social information for recommendation
Author:
Funder
National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
https://link.springer.com/content/pdf/10.1007/s10489-022-03620-2.pdf
Reference35 articles.
1. Sarwar B, Karypis G, Konstan J, Riedl J (2001) Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th international conference on world wide web, pp 285–295
2. Koren Y (2008) Factorization meets the neighborhood: A multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, pp 426–434
3. He X, Liao L, Zhang H, Nie L, Hu X, Chua T-S (2017) Neural collaborative filtering. In: Proceedings of the 26th international conference on world wide web, pp 173–182
4. Jamali M, Ester M (2010) A matrix factorization technique with trust propagation for recommendation in social networks. In: Proceedings of the Fourth ACM conference on recommender systems, pp 135–142
5. Zhang F, Yuan NJ, Lian D, Xie X, Ma W. -Y. (2016) Collaborative knowledge base embedding for recommender systems. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 353–362
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Survey of Graph Neural Networks for Social Recommender Systems;ACM Computing Surveys;2024-06-22
2. Joint friend and item recommendation based on multidimensional feature reciprocal interaction in social e-commerce;Electronic Commerce Research and Applications;2024-05
3. Construction of English Resource Database Network Information Recommendation Model Based on LSTM Algorithm;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15
4. Joint modeling of user and item preferences with interaction frequency and attention for knowledge graph-based recommendation;Applied Intelligence;2023-08-23
5. Towards evolving software recommendation with time-sliced social and behavioral information;Applied Intelligence;2023-08-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3