T-norms driven loss functions for machine learning

Author:

Giannini FrancescoORCID,Diligenti Michelangelo,Maggini Marco,Gori Marco,Marra Giuseppe

Abstract

AbstractInjecting prior knowledge into the learning process of a neural architecture is one of the main challenges currently faced by the artificial intelligence community, which also motivated the emergence of neural-symbolic models. One of the main advantages of these approaches is their capacity to learn competitive solutions with a significant reduction of the amount of supervised data. In this regard, a commonly adopted solution consists of representing the prior knowledge via first-order logic formulas, then relaxing the formulas into a set of differentiable constraints by using a t-norm fuzzy logic. This paper shows that this relaxation, together with the choice of the penalty terms enforcing the constraint satisfaction, can be unambiguously determined by the selection of a t-norm generator, providing numerical simplification properties and a tighter integration between the logic knowledge and the learning objective. When restricted to supervised learning, the presented theoretical framework provides a straight derivation of the popular cross-entropy loss, which has been shown to provide faster convergence and to reduce the vanishing gradient problem in very deep structures. However, the proposed learning formulation extends the advantages of the cross-entropy loss to the general knowledge that can be represented by neural-symbolic methods. In addition, the presented methodology allows the development of novel classes of loss functions, which are shown in the experimental results to lead to faster convergence rates than the approaches previously proposed in the literature.

Funder

Horizon 2020

Fonds Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Reference51 articles.

1. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436

2. Selbst A, Powles J (2018) meaningful information and the right to explanation. In: Conference on fairness, accountability and transparency. PMLR, pp 48–48

3. De Raedt L, Dumančić S, Manhaeve R, Marra G (2021) From statistical relational to neural-symbolic artificial intelligence. In: Proceedings of the twenty-ninth international conference on international joint conferences on artificial intelligence, pp 4943–4950

4. Garcez A, Gori M, Lamb L, Serafini L, Spranger M, Tran S (2019) Neural-symbolic computing: an effective methodology for principled integration of machine learning and reasoning. Journal of Applied Logics 6(4):611–631

5. Diligenti M, Gori M, Sacca C (2017) Semantic-based regularization for learning and inference. Artif Intell 244:143–165

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3