Automatic crack detection for tunnel inspection using deep learning and heuristic image post-processing
Author:
Funder
State Scholarships Foundation
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
http://link.springer.com/article/10.1007/s10489-018-01396-y/fulltext.html
Reference35 articles.
1. Shi Y, Cui L, Qi Z, Meng F, Chen Z (2016) Automatic road crack detection using random structured forests. IEEE Trans Intell Transp Syst 17(12):3434–3445
2. Amhaz R, Chambon S, Idier J, Baltazart V (2016) Automatic crack detection on two-dimensional pavement images: an algorithm based on minimal path selection. IEEE Trans Intell Transp Syst 17(10):2718–2729
3. Prasanna P et al (2016) Automated crack detection on concrete bridges. IEEE Trans Autom Sci Eng 13(2):591–599
4. Li G, Zhao X, Du K, Ru F, Zhang Y (2017) Recognition and evaluation of bridge cracks with modified active contour model and greedy search-based support vector machine. Autom Constr 78:51–61
5. Halfawy MR, Hengmeechai J (2014) Efficient algorithm for crack detection in sewer images from closed-circuit television inspections. J Infrastruct Syst 20(2):04013014
Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Visualization analysis of concrete crack detection in civil engineering infrastructure based on knowledge graph;Case Studies in Construction Materials;2024-12
2. Automated masonry spalling severity segmentation in historic railway tunnels using deep learning and a block face plane fitting approach;Tunnelling and Underground Space Technology;2024-11
3. Enhancing concrete defect segmentation using multimodal data and Siamese Neural Networks;Automation in Construction;2024-10
4. An Efficient Explainable Convolutional Network with Visualization of Feature Maps for Enhanced Understanding of Building Facade Defects;Journal of Computing in Civil Engineering;2024-09
5. Intelligent identification and quantification method of rockburst behavior characteristics based on vision and 3D laser point cloud technology;Measurement;2024-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3