Integrating short-term stochastic production planning updating with mining fleet management in industrial mining complexes: an actor-critic reinforcement learning approach

Author:

de Carvalho Joao PedroORCID,Dimitrakopoulos Roussos

Abstract

AbstractShort-term production planning in industrial mining complexes involves defining daily, weekly or monthly decisions that aim to achieve production targets established by long-term planning. Operational requirements must be considered when defining fleet allocation and production scheduling decisions. Thus, this paper presents an actor-critic reinforcement learning (RL) method to make mining equipment allocation and production scheduling decisions that maximize the profitability of a mining operation. Two RL agents are proposed. The first agent allocates shovels to mining fronts by considering some operational requirements. The second agent defines the processing destination and the number of trucks required for transportation. A simulator of mining complex operations is proposed to forecast the material flow from the mining fronts to the destinations. This simulator provides new states and rewards to the RL agents, so shovel allocation and production scheduling decisions can be improved. Additionally, as the mining complex operates, sensors collect ore quality data, which are used to update the uncertainty associated with the orebody models. The improvement in material supply characterization allows the RL agents to make more informed decisions. A case study applied at a copper mining complex highlights the method’s ability to make informed decisions while collecting new data. The results show a 47% improvement in cash flow by adapting the shovel and truck allocation and material destination compared to a base case with predefined fleet assignments.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3