Generative model based robotic grasp pose prediction with limited dataset

Author:

Shukla PriyaORCID,Pramanik Nilotpal,Mehta Deepesh,Nandi G. C.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Reference41 articles.

1. Agarap AF (2018) Deep learning using rectified linear units (relu). arXiv:1803.08375

2. Ahmed MU, Brickman S, Dengg A, Fasth N, Mihajlovic M, Norman J (2020) A machine learning approach to classify pedestrians’ event based on imu and gps. Int J Artif Intell 16(2). http://www.es.mdh.se/publications/5255-

3. Asif U, Tang J, Harrer S (2018) Ensemblenet: Improving grasp detection using an ensemble of convolutional neural networks. In: BMVC. p 10

4. Asif U, Tang J, Harrer S (2018) Graspnet: An efficient convolutional neural network for real-time grasp detection for low-powered devices. In: IJCAI. vol 7, pp 4875–4882

5. Bicchi A, Kumar V (2000) Robotic grasping and contact: A review. In: Proceedings 2000 ICRA. Millennium conference. IEEE international conference on robotics and automation. symposia proceedings (Cat. No. 00CH37065), vol 1. IEEE, pp 348–353

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Light-Weight Convolutional Neural Networks for Generative Robotic Grasping;IEEE Transactions on Industrial Informatics;2024-04

2. Object detection and pose estimation method by RGB-D camera for robotic grasping;Fourth International Conference on Mechanical Engineering, Intelligent Manufacturing, and Automation Technology (MEMAT 2023);2024-04-01

3. Robust depth completion based on Semantic Aggregation;Applied Intelligence;2024-03

4. Robotic Grasp Detection Using Structure Prior Attention and Multiscale Features;IEEE Transactions on Systems, Man, and Cybernetics: Systems;2024

5. A Novel RGB-D Cross-Background Robot Grasp Detection Dataset and Background-Adaptive Grasping Network;IEEE Transactions on Instrumentation and Measurement;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3