A least squares support vector machine model optimized by moth-flame optimization algorithm for annual power load forecasting
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
http://link.springer.com/article/10.1007/s10489-016-0810-2/fulltext.html
Reference41 articles.
1. Sanstad AH, McMenamin S, Sukenik A, Barbose GL, Goldman CA (2014) Modeling an aggressive energy-efficiency scenario in long-range load forecasting for electric power transmission planning. Appl Energy 128:265–276
2. Zakariazadeh A, Jadid S, Siano P (2014) Stochastic operational scheduling of smart distribution system considering wind generation and demand response programs. Int J Electr Power Energy Syst 63:218–225
3. Al-Hamadi H, Soliman S (2005) Long-term/mid-term electric load forecasting based on short-term correlation and annual growth. Electr Power Syst Res 74:353–361
4. Wang J, Li L, Niu D, Tan Z (2012) An annual load forecasting model based on support vector regression with differential evolution algorithm. Appl Energy 94:65–70
5. Hamzacebi C, Es HA (2014) Forecasting the annual electricity consumption of turkey using an optimized grey model. Energy 70:165–171
Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Forecasting ionospheric TEC using least squares support vector machine and moth-flame optimization methods in China;Advances in Space Research;2024-08
2. RESPONSE SURFACE TECHNIQUES AS AN INEVITABLE TOOL IN OPTIMIZATION PROCESS;Response Surface Methods - Theory, Applications and Optimization Techniques;2024-07-10
3. An improved LSSVM discrimination model based on factor analysis and moth flame optimization algorithm for identifying water inrush sources across multiple aquifers in mines;Environmental Earth Sciences;2024-07
4. BAOS-CNN: A novel deep neuroevolution algorithm for multispecies seagrass detection;PLOS ONE;2024-06-25
5. Granularity Statistical Invariants Learning;2024 International Conference on Artificial Intelligence and Digital Technology (ICAIDT);2024-06-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3