A multiobjective prediction model with incremental learning ability by developing a multi-source filter neural network for the electrolytic aluminium process

Author:

Yao Lizhong,Ding Wei,He Tiantian,Liu Shouxin,Nie Ling

Abstract

AbstractImproving current efficiency and reducing energy consumption are two important technical goals of the electrolytic aluminum process (EAP). However, because the process involves complex noise characteristics (i.e., unknown types, redundant distributions and variable forms), it is very difficult to accurately develop a multiobjective prediction model. To overcome this problem, in this paper, a novel framework of multiobjective incremental learning based on a multi-source filter neural network (MSFNN) is presented. The proposed framework first presents a “multi-source filter” (MSF) technique that utilizes the mean and variance in the unscented Kalman filter (UKF) to guide the importance function of the particle filter (PF) based on a density kernel estimation method. Then, the MSF is embedded in the mutated neural network to adjust weights in real time. Third, weights are calculated and normalized by a modified importance function, which is the basis for further optimizing a secondary sampling based on sampling importance resampling (SIR). Finally, the incremental learning model with two objectives (i.e., process power consumption and current efficiency) based on the MSFNN in the EAP is established. The presented framework has been verified by the real-world EAP and some closely related methods. All test results indicate that the MSFNN’s relative prediction errors of the above two objectives are controlled within 0.51% and 0.38%, respectively and prove that MSFNN has significant competitive advantages over other recent filtering network models. Successfully establishment of the proposed framework provides a model foundation for multiobjective optimization problems in the EAP.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3