Defect classification on limited labeled samples with multiscale feature fusion and semi-supervised learning
Author:
Funder
National Program on Key Basic Research Project
Key-Area Research and Development Program of Guangdong Province
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
https://link.springer.com/content/pdf/10.1007/s10489-021-02917-y.pdf
Reference47 articles.
1. Zheng X, Chen J, Wang H et al (2021) A deep learning-based approach for the automated surface inspection of copper clad laminate images. Appl Intell 51:1262–1279
2. Wu J, Le J, Xiao Z, et al (2021) Automatic fabric defect detection using a wide-and-light network[J]. Applied Intelligence 51(7):4945–4961
3. Di H, Ke X, Peng Z, Dongdong Z (2019) Surface defect classification of steels with a new semi-supervised learning method. Opt Lasers Eng 117:40–48
4. Dong H, Song K, He Y, et al (2019) PGA-Net: Pyramid feature fusion and global context attention network for automated surface defect detection[J]. IEEE Transactions on Industrial Informatics 16(12):7448–7458
5. Lee H, Ryu K (2020) Dual-Kernel-Based Aggregated Residual Network for Surface Defect Inspection in Injection Molding Processes. Appl Sci 10:8171
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Novel Semi-Supervised Learning for Industrial Edge Computing Platforms in Quality Prediction;SN Computer Science;2024-06-10
2. An unsupervised end-to-end approach to fault detection in delta 3D printers using deep support vector data description;Journal of Manufacturing Systems;2024-02
3. Multiresolution feature guidance based transformer for anomaly detection;Applied Intelligence;2024-01
4. Modified Fusing-and-Filling Generative Adversarial Network–based few-shot image generation for GMAW defect detection using multi-sensor monitoring system;The International Journal of Advanced Manufacturing Technology;2023-08-11
5. A denoising semi-supervised deep learning model for remaining useful life prediction of turbofan engine degradation;Applied Intelligence;2023-06-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3