Hierarchical multi-scale parametric optimization of deep neural networks

Author:

Zhang Sushen,Vassiliadis Vassilios S.,Dorneanu BogdanORCID,Arellano-Garcia Harvey

Abstract

AbstractTraditionally, sensitivity analysis has been utilized to determine the importance of input variables to a deep neural network (DNN). However, the quantification of sensitivity for each neuron in a network presents a significant challenge. In this article, a selective method for calculating neuron sensitivity in layers of neurons concerning network output is proposed. This approach incorporates scaling factors that facilitate the evaluation and comparison of neuron importance. Additionally, a hierarchical multi-scale optimization framework is proposed, where layers with high-importance neurons are selectively optimized. Unlike the traditional backpropagation method that optimizes the whole network at once, this alternative approach focuses on optimizing the more important layers. This paper provides fundamental theoretical analysis and motivating case study results for the proposed neural network treatment. The framework is shown to be effective in network optimization when applied to simulated and UCI Machine Learning Repository datasets. This alternative training generates local minima close to or even better than those obtained with the backpropagation method, utilizing the same starting points for comparative purposes within a multi-start optimization procedure. Moreover, the proposed approach is observed to be more efficient for large-scale DNNs. These results validate the proposed algorithmic framework as a rigorous and robust new optimization methodology for training (fitting) neural networks to input/output data series of any given system. Graphical Abstract

Funder

Cambridge Overseas Trust

Brandenburgische TU Cottbus-Senftenberg

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3