1. Alexandrov A, Benidis K, Bohlke-Schneider M et al (2020) Gluonts: probabilistic and neural time series modeling in python. J Mach Learn Res 21(116):1–6. http://jmlr.org/papers/v21/19-820.html
2. Bai L, Yao L, Li C et al (2020) Adaptive graph convolutional recurrent network for traffic forecasting. In: Larochelle H, Ranzato M, Hadsell R et al (eds) Advances in neural information processing systems, vol 33. Curran Associates, Inc., pp 17,804–17,815
3. Bai S, Kolter JZ, Koltun V (2018) An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv:1803.01271
4. Bruna J, Zaremba W, Szlam A et al (2014) Spectral networks and locally connected networks on graphs. International conference on learning representations (ICLR 2014)
5. Cao D, Wang Y, Duan J et al (2020) Spectral temporal graph neural network for multivariate time-series forecasting. Adv Neural Inf Process Syst 33