Dimensionality reduction of SPD data based on Riemannian manifold tangent spaces and local affinity
Author:
Funder
national natural science foundation of china
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
https://link.springer.com/content/pdf/10.1007/s10489-022-03177-0.pdf
Reference43 articles.
1. Jayasumana S, Hartley R, Salzmann M, li H, Harandi M (2014) Kernel methods on Riemannian manifolds with Gaussian RBF kernels. IEEE Trans Pattern Anal Mach Intell, 37
2. Arsigny V, Fillard P, Pennec X, Ayache N (2005) Fast and simple computations on tensors with log-Euclidean Metrics. INRIA Res Rep
3. Huang Z, Wang R, Li X, Liu W, Shan S, Gool LV, Chen X (2018) Geometry-aware similarity learning on SPD manifolds for visual recognition. IEEE Trans Circ Syst Vid Technol 28(10):2513–2523. https://doi.org/10.1109/TCSVT.2017.2729660
4. Harandi M, Salzmann M, Hartley R (2018) Dimensionality reduction on SPD manifolds: the emergence of geometry-aware methods. IEEE Trans Pattern Anal Mach Intell 40(1):48–62. https://doi.org/10.1109/TPAMI.2017.2655048
5. Huang Z, Wang R, Shan S, Gool LV, Chen X (2018) Cross Euclidean-to-Riemannian metric learning with application to face recognition from video. IEEE Trans Pattern Anal Mach Intell 40(12):2827–2840. https://doi.org/10.1109/TPAMI.2017.2776154
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep manifold orthometric network for the detection of cancer metastasis in lymph nodes via histopathology image segmentation;Biomedical Signal Processing and Control;2024-10
2. Bayesian estimation of covariate assisted principal regression for brain functional connectivity;Biostatistics;2024-07-09
3. An optimization approach to supervised principal component analysis;New Insights on Principal Component Analysis - New Insights on Principal Component Analysis [Working Title];2023-12-05
4. A discriminative multiple-manifold network for image set classification;Applied Intelligence;2023-08-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3