Funder
Li Ka Shing Foundation
STU Incubation Project for the Research of Digital Humanities and New Liberal Arts
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology
Publisher
Springer Science and Business Media LLC
Reference46 articles.
1. Huakang L u, Ge Z, Song Y, Jiang D, Zhou T, Qin J (2021) A temporal-aware lstm enhanced by loss-switch mechanism for traffic flow forecasting. Neurocomputing 427:169–178
2. Guo S, Lin Y, Feng N, Song C, Wan H (2019) Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In: Proceedings of the AAAI conference on artificial intelligence, vol 33, pp 922–929
3. Wang X, Ma Y, Wang Y, Jin W, Wang X, Tang J, Jia C, Jian Y u (2020) Traffic flow prediction via spatial temporal graph neural network. In: Proceedings of the web conference 2020, pp 1082–1092
4. Yang S, Li H, Luo Y u, Li J, Song Y, Zhou T (2022) Spatiotemporal adaptive fusion graph network for short-term traffic flow forecasting. Mathematics 10(9):1594
5. Li Y, Yu R, Cyrus S, Liu Y (2018) Diffusion convolutional recurrent neural network: data-driven traffic forecasting. In: International conference on learning representations
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献