Using N-BEATS ensembles to predict automated guided vehicle deviation

Author:

Karamchandani Amit,Mozo AlbertoORCID,Vakaruk Stanislav,Gómez-Canaval Sandra,Sierra-García J. Enrique,Pastor Antonio

Abstract

AbstractA novel AGV (Automated Guided Vehicle) control architecture has recently been proposed where the AGV is controlled remotely by a virtual Programmable Logic Controller (PLC), which is deployed on a Multi-access Edge Computing (MEC) platform and connected to the AGV via a radio link in a 5G network. In this scenario, we leverage advanced deep learning techniques based on ensembles of N-BEATS (state-of-the-art in time-series forecasting) to build predictive models that can anticipate the deviation of the AGV’s trajectory even when network perturbations appear. Therefore, corrective maneuvers, such as stopping the AGV, can be performed in advance to avoid potentially harmful situations. The main contribution of this work is an innovative application of the N-BEATS architecture for AGV deviation prediction using sequence-to-sequence modeling. This novel approach allows for a flexible adaptation of the forecast horizon to the AGV operator’s current needs, without the need for model retraining or sacrificing performance. As a second contribution, we extend the N-BEATS architecture to incorporate relevant information from exogenous variables alongside endogenous variables. This joint consideration enables more accurate predictions and enhances the model’s overall performance. The proposed solution was thoroughly evaluated through realistic scenarios in a real factory environment with 5G connectivity and compared against main representatives of deep learning architectures (LSTM), machine learning techniques (Random Forest), and statistical methods (ARIMA) for time-series forecasting. We demonstrate that the deviation of AGVs can be effectively detected by using ensembles of our extended N-BEATS architecture that clearly outperform the other methods. Finally, a careful analysis of a real-time deployment of our solution was conducted, including retraining scenarios that could be triggered by the appearance of data drift problems.

Funder

Horizon 2020 Framework Programme

Universidad Politécnica de Madrid

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3