Automatic prognosis of lung cancer using heterogeneous deep learning models for nodule detection and eliciting its morphological features
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
http://link.springer.com/content/pdf/10.1007/s10489-020-01990-z.pdf
Reference33 articles.
1. American Cancer Society (2015) Global Cancer Facts & Figures 3rd Edition, pp 21
2. Fontana R S, Sanderson D R, Woolner L B, Taylor W F, Miller W E, Muhm J R (1986) Lung cancer screening: the Mayo program. J Occup Med 28(8):746–750
3. Ellert J, Kreel L (1980) The role of computed tomography in the initial staging and subsequent management of the lymphomas. J Comput Assist Tomogr 4(3):368–391
4. Bach P B, Kelley M J, Tate R C, McCrory D C (2003) Screening for lung cancer: a review of the current literature. Chest 123(1):72–82
5. Aberle D R, Adams A M, Berg C D, Black W C, Clapp J D, Fagerstrom R M, Gareen I F, Gatsonis C, Marcus P M, Sicks J D (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365(5):395–409
Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An optimized convolutional neural network architecture for lung cancer detection;APL Bioengineering;2024-06-01
2. Lung cancer computed tomography image classification using Attention based Capsule Network with dispersed dynamic routing;Expert Systems;2024-05-08
3. Quantum-enhanced hybrid feature engineering in thoracic CT image analysis for state-of-the-art nodule classification: an advanced lung cancer assessment;Biomedical Physics & Engineering Express;2024-05-07
4. A Federated Learning-based Model for the Detection of Lung Cancer from CT Scan Images;2024 6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT);2024-05-02
5. A Machine Learning Approach to Detect Lung Nodules Using Reinforcement Learning Based on Imbalanced Classification;SN Computer Science;2024-03-29
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3