Abstract
AbstractPipeline infrastructures, carrying either gas or oil, are often affected by internal corrosion, which is a dangerous phenomenon that may cause threats to both the environment (due to potential leakages) and the human beings (due to accidents that may cause explosions in presence of gas leakages). For this reason, predictive mechanisms are needed to detect and address the corrosion phenomenon. Recently, we have seen a first attempt at leveraging Machine Learning (ML) techniques in this field thanks to their high ability in modeling highly complex phenomena. In order to rely on these techniques, we need a set of data, representing factors influencing the corrosion in a given pipeline, together with their related supervised information, measuring the corrosion level along the considered infrastructure profile. Unfortunately, it is not always possible to access supervised information for a given pipeline since measuring the corrosion is a costly and time-consuming operation. In this paper, we will address the problem of devising a ML-based predictive model for internal corrosion under the assumption that supervised information is unavailable for the pipeline of interest, while it is available for some other pipelines that can be leveraged through Transfer Learning (TL) to build the predictive model itself. We will cover all the methodological steps from data set creation to the usage of TL. The whole methodology will be experimentally validated on a set of real-world pipelines.
Publisher
Springer Science and Business Media LLC
Reference29 articles.
1. Li X, Zhang D, Liu Z, Li Z, Du C, Dong C (2015) Materials science: Share corrosion data. Nat News 527(7579):441
2. Nešić S (2007) Key issues related to modelling of internal corrosion of oil and gas pipelines–a review. Corrosion Sci 49(12):4308–4338
3. De Masi G, Gentile M, Vichi R, Bruschi R, Gabetta G (2017) Multiscale processing of loss of metal: a machine learning approach. In: Journal of Physics: Conference Series, vol 869. IOP Publishing, p 012023
4. De Waard C, Lotz U (1993) Prediction of co˜ 2 corrosion of carbon steel. In: Corrosion-national association of corrosion engineers annual conference-. NACE
5. De Masi G, Vichi R, Gentile M, Bruschi R, Gabetta G (2014) A neural network predictive model of pipeline internal corrosion profile. In: Proceeding of First International Conference on Systems Informatics, Modeling and Simulation, vol 29. IEEE Computer Society, Washington, pp 01–05
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献