Parallel adaptive guidance network for image inpainting

Author:

Jiang Jinyang,Dong Xiucheng,Li Tao,Zhang Fan,Qian Hongjiang,Chen Guifang

Abstract

AbstractMotivated by human behavior, dividing inpainting tasks into structure reconstruction and texture generation helps to simplify restoration process and avoid distorted structures and blurry textures. However, most of tasks are ineffective for dealing with large continuous holes. In this paper, we devise a parallel adaptive guidance network(PAGN), which repairs structures and enriches textures through parallel branches, and several intermediate-level representations in different branches guide each other via the vertical skip connection and the guidance filter, ensuring that each branch only leverages the desirable features of another and outputs high-quality contents. Considering that the larger the missing regions are, less information is available. We promote the joint-contextual attention mechanism(Joint-CAM), which explores the connection between unknown and known patches by measuring their similarity at the same scale and at different scales, to utilize the existing messages fully. Since strong feature representation is essential for generating visually realistic and semantically reasonable contents in the missing regions, we further design attention-based multiscale perceptual res2blcok(AMPR) in the bottleneck that extracts features of various sizes at granular levels and obtains relatively precise object locations. Experiments on the public datasets CelebA-HQ, Places2, and Paris show that our proposed model is superior to state-of-the-art models, especially for filling large holes.

Funder

national natural science foundation of china

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Image inpainting via progressive decoder and gradient guidance;Complex & Intelligent Systems;2023-07-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3