A systematic comparison of different machine learning models for the spatial estimation of air pollution

Author:

Cerezuela-Escudero ElenaORCID,Montes-Sanchez Juan Manuel,Dominguez-Morales Juan Pedro,Duran-Lopez Lourdes,Jimenez-Moreno Gabriel

Abstract

Abstract Air pollutants harm human health and the environment. Nowadays, deploying an air pollution monitoring network in many urban areas could provide real-time air quality assessment. However, these networks are usually sparsely distributed and the sensor calibration problems that may appear over time lead to missing and wrong measurements. There is an increasing interest in developing air quality modelling methods to minimize measurement errors, predict spatial and temporal air quality, and support more spatially-resolved health effect analysis. This research aims to evaluate the ability of three feed-forward neural network architectures for the spatial prediction of air pollutant concentrations using the measures of an air quality monitoring network. In addition to these architectures, Support Vector Machines and geostatistical methods (Inverse Distance Weighting and Ordinary Kriging) were also implemented to compare the performance of neural network models. The evaluation of the methods was performed using the historical values of seven air pollutants (Nitrogen monoxide, Nitrogen dioxide, Sulphur dioxide, Carbon monoxide, Ozone, and particulate matters with size less than or equal to 2.5 $$\upmu $$ μ m and to 10 $$\upmu $$ μ m) from an urban air quality monitoring network located at the metropolitan area of Madrid (Spain). To assess and compare the predictive ability of the models, three estimation accuracy indicators were calculated: the Root Mean Squared Error, the Mean Absolute Error, and the coefficient of determination. FFNN-based models are superior to geostatistical methods and slightly better than Support Vector Machines for fitting the spatial correlation of air pollutant measurements. Graphical abstract

Funder

European Regional Development Fund

Universidad de Sevilla

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3