Dual selective knowledge transfer for few-shot classification

Author:

He KaiORCID,Pu Nan,Lao Mingrui,Bakker Erwin M.,Lew Michael S.

Abstract

AbstractFew-shot learning aims at recognizing novel visual categories from very few labelled examples. Different from the existing few-shot classification methods that are mainly based on metric learning or meta-learning, in this work we focus on improving the representation capacity of feature extractors. For this purpose, we propose a new two-stage dual selective knowledge transfer (DSKT) framework, to guide models towards better optimization. Specifically, we first exploit an improved multi-task learning approach to train a feature extractor with robust representation capability as a teacher model. Then, we design an effective dual selective knowledge distillation method, which enables the student model to selectively learn knowledge from the teacher model and current samples, thereby improving the student model’s ability to generalize on unseen classes. Extensive experimental results show that our DSKT achieves competitive performances on four well-known few-shot classification benchmarks.

Funder

China Scholarship Council

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3