BBW: a batch balance wrapper for training deep neural networks on extremely imbalanced datasets with few minority samples

Author:

Hu Jingzhao,Zhang Hao,Liu Yang,Sutcliffe Richard,Feng Jun

Abstract

AbstractIn recent years, Deep Neural Networks (DNNs) have achieved excellent performance on many tasks, but it is very difficult to train good models from imbalanced datasets. Creating balanced batches either by majority data down-sampling or by minority data up-sampling can solve the problem in certain cases. However, it may lead to learning process instability and overfitting. In this paper, we propose the Batch Balance Wrapper (BBW), a novel framework which can adapt a general DNN to be well trained from extremely imbalanced datasets with few minority samples. In BBW, two extra network layers are added to the start of a DNN. The layers prevent overfitting of minority samples and improve the expressiveness of the sample distribution of minority samples. Furthermore, Batch Balance (BB), a class-based sampling algorithm, is proposed to make sure the samples in each batch are always balanced during the learning process. We test BBW on three well-known extremely imbalanced datasets with few minority samples. The maximum imbalance ratio reaches 1167:1 with only 16 positive samples. Compared with existing approaches, BBW achieves better classification performance. In addition, BBW-wrapped DNNs are 16.39 times faster, relative to unwrapped DNNs. Moreover, BBW does not require data preprocessing or additional hyper-parameter tuning, operations that may require additional processing time. The experiments prove that BBW can be applied to common applications of extremely imbalanced data with few minority samples, such as the classification of EEG signals, medical images and so on.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3