Machine learning techniques for software vulnerability prediction: a comparative study
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
https://link.springer.com/content/pdf/10.1007/s10489-022-03350-5.pdf
Reference75 articles.
1. Kansal Y, Kumar P, Uday K (2018) Coverage â? based vulnerability discovery modeling to optimize disclosure time using multiattribute approach. June 2017, pp 1–12. https://doi.org/10.1002/qre.2380
2. Goseva-Popstojanova K, Tyo J (2018) Identification of security related bug reports via text mining using supervised and unsupervised classification. In: 2018 IEEE International conference on software quality, reliability and security (QRS), IEEE, pp 344–355
3. Şahin C B, Dinler OB, Abualigah L (2021) Prediction of software vulnerability based deep symbiotic genetic algorithms: Phenotyping of dominant-features. Appl Intell, pp 1–17
4. Zeng J, Nie X, Chen L, Li J, Du G, Shi G (2020) An efficient vulnerability extrapolation using similarity of graph kernel of pdgs. In: 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), IEEE, pp 1664–1671
5. Dam HK, Tran T, Pham TTM, Ng SW, Grundy J, Ghose A (2018) Automatic feature learning for predicting vulnerable software components. IEEE Trans Softw Eng
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. VALIDATE: A deep dive into vulnerability prediction datasets;Information and Software Technology;2024-06
2. A comparative study of neural network architectures for software vulnerability forecasting;Logic Journal of the IGPL;2024-05-14
3. PoC Self-Generation Technology Based on Vulnerability Verification Program;2023 IEEE 4th Annual Flagship India Council International Subsections Conference (INDISCON);2023-08-05
4. Recent advances in deep learning models: a systematic literature review;Multimedia Tools and Applications;2023-04-25
5. A Systematic Literature Review on Software Vulnerability Prediction Models;IEEE Access;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3