IOSUDA: an unsupervised domain adaptation with input and output space alignment for joint optic disc and cup segmentation
Author:
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
https://link.springer.com/content/pdf/10.1007/s10489-020-01956-1.pdf
Reference57 articles.
1. Aquino A, Gegúndez-Arias ME, Marín D (2010) Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Trans. Med. Imaging 29 (11):1860–1869
2. Bousmalis K, Silberman N, Dohan D, Erhan D, Krishnan D (2017) Unsupervised pixel-level domain adaptation with generative adversarial networks. In: Proc. Int. Conf. CVPR, pp 3722– 3731
3. Bousmalis K, Trigeorgis G, Silberman N, Krishnan D, Erhan D (2016) Domain separation networks. In: Proc. Adv. NeurIPS, pp 343–351
4. Chen C, Dou Q, Chen H, Heng PA (2018) Semantic-aware generative adversarial nets for unsupervised domain adaptation in chest x-ray segmentation. In: Int. Workshop Mach. Learn. Med. Imaging, pp 143–151. Springer
5. Chen C, Dou Q, Chen H, Qin J, Heng PA (2020) Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Domain Adaptation-Based deep learning model for forecasting and diagnosis of glaucoma disease;Biomedical Signal Processing and Control;2024-06
2. Entropy and distance-guided super self-ensembling for optic disc and cup segmentation;Biomedical Optics Express;2024-05-30
3. Self-ensembling with mask-boundary domain adaptation for optic disc and cup segmentation;Engineering Applications of Artificial Intelligence;2024-03
4. MRSNet: Joint consistent optic disc and cup segmentation based on large kernel residual convolutional attention and self-attention;Digital Signal Processing;2024-02
5. C2FTFNet: Coarse-to-fine transformer network for joint optic disc and cup segmentation;Computers in Biology and Medicine;2023-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3