Computer Vision Approaches for Segmentation of Nanoscale Precipitates in Nickel-Based Superalloy IN718

Author:

Senanayake Nishan M.ORCID,Carter Jennifer L. W.

Abstract

AbstractExtracting accurate volume fraction and size measurements ofγ″ andγ′ precipitates in iron-based superalloys from micrographs is challenging and conventionally involves manual image processing due to their smaller size, and similar crystal structures and chemistries. The co-precipitation of composite particles further complicates automated segmentation. In this work, different types of traditional machine learning approaches and a convolutional neural network (CNN) were compared to a non-machine learning approach, for the segmentation of the composite particles ofγ″ andγ′ precipitates. The objective was to optimize metrics of segmentation accuracy and the required computational resources. The data set contains 47 experimentally generated scanning electron micrographs of IN718 alloy samples, computationally increased to 188 images (900 × 900 px). All algorithms are containerized using singularity, publicly available, and can be modified without dependencies. The CNN and the random forest models achieve 95% and 94% accuracy, respectively, on the test images with better computational efficiency than the non-machine learning algorithm. The CNN tested accurately over a range of imaging conditions.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3