Ability to Simulate Absorption and Melt Pool Dynamics for Laser Melting of Bare Aluminum Plate: Results and Insights from the 2022 Asynchronous AM-Bench Challenge

Author:

Simonds Brian J.ORCID,Tanner Jack,Artusio-Glimpse Alexandra,Parab Niranjan,Zhao Cang,Sun Tao,Williams Paul A.

Abstract

AbstractThe 2022 Asynchronous AM-Bench challenge was designed to test the ability of simulations to accurately predict laser power absorption as well as various melt pool behaviors (width, depth, and solidification) during laser melting of solid metal during stationary and scanned laser illumination. In this challenge, participants were asked to predict a series of experimental outcomes. Experimental data were obtained from a series of experiments performed at the Advanced Photon Source at Argonne National Laboratories in 2019. These experiments combined integrating sphere radiometry with high-speed X-ray imaging, allowing for the simultaneous recording of absolute laser power absorption and two-dimensional, projected images of the melt pool. All challenge problems were based on experiments using bare aluminum solid metal. Participants were provided with pertinent experimental information like laser power, scan speed, laser spot size, and material composition. Additionally, participants were given absorptance and X-ray imaging data from stationary and scanned laser experiments on solid Ti–6Al–4V that could be used for testing their models before attempting challenge problems. In total, this challenge received 56 submissions from eight different research groups for eight individual challenge problems. The data for this challenge, and associated information, are available for download from the NIST Public Data Repository. This paper summarizes the results from the 2022 Asynchronous AM-Bench challenge as well as discusses the lessons learned to help inform future challenges.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3