High-Throughput Microstructural Characterization and Process Correlation Using Automated Electron Backscatter Diffraction

Author:

Fowler J. ElliottORCID,Ruggles Timothy J.,Cillessen Dale E.,Johnson Kyle L.,Jauregui Luis J.,Craig Robert L.,Bianco Nathan R.,Henriksen Amelia A.,Boyce Brad L.

Abstract

AbstractThe need to optimize the processing conditions of additively manufactured (AM) metals and alloys has driven advances in throughput capabilities for material property measurements such as tensile strength or hardness. High-throughput (HT) characterization of AM metal microstructure has fallen significantly behind the pace of property measurements due to intrinsic bottlenecks associated with the artisan and labor-intensive preparation methods required to produce highly polished surfaces. This inequality in data throughput has led to a reliance on heuristics to connect process to structure or structure to properties for AM structural materials. In this study, we show a transformative approach to achieve laser powder bed fusion (LPBF) printing, HT preparation using dry electropolishing and HT electron backscatter diffraction (EBSD). This approach was used to construct a library of > 600 experimental EBSD sample sets spanning a diverse range of LPBF process conditions for AM Kovar. This vast library is far more expansive in parameter space than most state-of-the-art studies, yet it required only approximately 10 labor hours to acquire. Build geometries, surface preparation methods, and microscopy details, as well as the entire library of >600 EBSD data sets over the two sample design versions, have been shared with intent for the materials community to leverage the data and further advance the approach. Using this library, we investigated process–structure relationships and uncovered an unexpected, strong dependence of microstructure on location within the build, when varied, using otherwise identical laser parameters.

Funder

Sandia National Laboratories

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3