On the Prediction of Uniaxial Tensile Behavior Beyond the Yield Point of Wrought and Additively Manufactured Ti-6Al-4V

Author:

Quintana Maria J.ORCID,Temple Andrew J.,Harlow D. Gary,Collins Peter C.

Abstract

AbstractIn this paper, phenomenological relationships are presented that permit the prediction of the plastic regime of stress–strain curves using a limited number of parameters. These relationships were obtained from both conventional (wrought + β annealed) and additively manufactured (i.e., “3D printed”) Ti-6Al-4V. Three different methods of additive manufacturing have been exploited to produce the materials, including large-volume electron beam additive manufacturing, large-volume laser hot wire additive manufacturing, and small-volume selective laser melting. The general fundamental expressions are independent not only of the additive manufacturing process, but also of a wide variety of post-deposition heat treatments, however the coefficients are specific to material states. Thus, this work demonstrates that it is possible to predict not only the ultimate tensile strength, but also the full true stress, true strain curves, if certain parameters of the material are known. In general, the prediction of ultimate tensile strength are within 5% of the experimentally measured values across all additive manufacturing variants and subsequent heat treatments. The absolute values of ultimate tensile strength range from ~ 910 MPa to ~ 1170 MPa for the single alloy Ti-6Al-4V. Data representing 113 explicit samples are included in this work.

Funder

Defense Sciences Office, DARPA

Office of Naval Research Global

Honeywell Federal Manufacturing and Technologies

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3