Abstract
AbstractAn integrated computational materials engineering approach to the design of alloys for supersolidus liquid phase sintering has been developed. The method aims to minimize the sensitivity of the alloys to variabilities in material (e.g., composition) and process parameters (e.g., temperature) during sintering while also maximizing mechanical properties. This is achieved by developing a fast acting and high throughput design models that can quantify the processability and the resulting mechanical properties. A highly processable alloy is defined as one that is tolerant to both composition and process conditions such that changes in either do not materially affect the alloy properties. The design models are validated using experimental data from the literature and the computational design approach is demonstrated by designing unique high-speed steels with enhanced processability for powder metallurgy.
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献