Intelligent approach to predict future groundwater level based on artificial neural networks (ANN)
Author:
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s41207-020-00185-9.pdf
Reference38 articles.
1. Ahmadi SH, Sedghamiz A (2007) Geostatistical analysis of spatial and temporal variations of groundwater level. Environ Monit Assess 129:277–294
2. Aichouri I, Hani A, Bougherira N, Djabri L, Chaffai H, Lallahem S (2015) River flow model using artificial neural networks. Energy Procedia 74:1007–1014
3. Banadkooki BF, Ehteram M, Ahmed NA, Teo YF, Fai CM, Afan HA, Sapitang M, Shafie A (2020) Enhancement of groundwater-level prediction using an integrated machine learning model optimized by whale algorithm. Nat Resour Res. https://doi.org/10.1007/s11053-020-09634-2
4. Bodri L, Cermak V (2000) Prediction of extreme precipitation using a neural network: application to summer flood occurrence in Moravia. Adv Eng Softw 31:311–321
5. Chitsazan M, Gholamreza R, Neyamdpour A (2015) Forecasting groundwater level by artificial neural networks as an alternative approach to groundwater modeling. J Geol Soc India 85:98–106
Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Artificial Intelligence Advancements for Accurate Groundwater Level Modelling: An Updated Synthesis and Review;Applied Sciences;2024-08-21
2. Spatio-temporal multivariable time vario-zoom network for water level forecasting based on high-resolution hydrological dataset;Journal of Hydrology;2024-05
3. Modeling spatial groundwater level patterns of Bangladesh using physio-climatic variables and machine learning algorithms;Groundwater for Sustainable Development;2024-05
4. Interpolation and Prediction of Piezometric Multivariate Time Series Based on Data Augmentation and Transformers;Lecture Notes in Networks and Systems;2024
5. Spatial distribution characteristics and source analysis of shallow groundwater pollution in typical areas of Yangtze River Delta;Science of The Total Environment;2024-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3