Pumped-storage hydropower and hydrogen storage for meeting water and energy demand through a hybrid renewable energy system

Author:

Papathanasiou Athanasios-FoivosORCID,Bertsiou Maria MargaritaORCID,Baltas Evangelos

Abstract

AbstractThe majority of the Greek islands have autonomous energy stations, which use fossil fuels to produce electricity in order to meet electricity demand. Also, the water in the network is not fit for consumption. In this paper, the potential development of a hybrid renewable energy system is examined to address the issue of generating drinking water (desalination) and electricity while releasing zero pollutants into the atmosphere. Wind turbines supply wind energy, while an additional amount of energy is stored using pumped-storage hydropower and green hydrogen tanks. These two storage options are investigated for the purpose of storing and distributing clean wind energy in a controlled manner. Three scenarios are investigated. The first scenario only relies on the pumped-storage hydroelectricity technology (88% of the total annual power demand is covered), the second scenario investigates hydrogen storage technology (83% of the total annual electricity demand is covered), and the third scenario uses a hybrid storage solution consisting of pumped-storage hydropower and green hydrogen tanks (95% coverage).

Funder

National Technical University of Athens

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3