Novel Hollow Re-entrant Structures Improving Hydrophobicity of Metal Surfaces

Author:

Zou Zhaoqiang,Xu Jinkai,Ren Wanfei

Abstract

AbstractRe-entrant structures have drawn increasing attention because of their hydrophobicity. However, it is very difficult to manufacture re-entrant structures at the micron scale on metal surfaces. In this study, we designed and manufactured novel hollow re-entrant structures employing laser ablation and electrodeposition technology. This designed hollow re-entrant structure on metal surfaces has been fabricated successfully, which has high processing efficiency and good repeatability. The morphology and size of the hollow re-entrant structures were characterized. We found that the hydrophobic performance of hollow re-entrant structures was improved after being in the atmosphere for 3 days. After electrodeposition, the static contact angle was 133°. However, after being placed in the atmosphere for 3 days, the static contact angle was 140.4°, which is 5.2% higher than that after electrochemical deposition. We explained the cause of this phenomenon. The change of element content on the surface of hollow re-entrant structures was used to indicate the formation of metal oxide. After being in the atmosphere for 3 days, oxygen content increased by 0.4%. The metal surfaces with hollow re-entrant structures have a broader application prospect.

Funder

The National Key Research and Development Program of China

Key Technology Research and Development Program of Shandong

The Fund for the Central Government Guides Local Science and Technology Development Funds to the Special Basic Research of Jilin Province

Innovation and Entrepreneurship Talent Project of Lanzhou

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Materials Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3