Silicon Vacancy Color Centers in 6H-SiC Fabricated by Femtosecond Laser Direct Writing

Author:

Zhou Zhanqi,Xu ZongweiORCID,Song Ying,Shi Changkun,Zhang Kun,Dong Bing

Abstract

AbstractAs a single photon source, silicon vacancy (VSi) centers in wide bandgap semiconductor silicon carbide (SiC) are expected to be used in quantum technology as spin qubits to participate in quantum sensing and quantum computing. Simultaneously, the new direct femtosecond (fs) laser writing technology has been successfully applied to preparing VSis in SiC. In this study, 6H-SiC, which has been less studied, was used as the processed material. VSi center arrays were formed on the 6H-SiC surface using a 1030-nm-wavelength fs pulsed laser. The surface was characterized by white light microscopy, atomic force microscopy, and confocal photoluminescence (PL)/Raman spectrometry. The effect of fs laser energy, vector polarization, pulse number, and repetition rate on 6H-SiC VSi defect preparation was analyzed by measuring the VSi PL signal at 785-nm laser excitation. The results show that fs laser energy and pulse number greatly influence the preparation of the color center, which plays a key role in optimizing the yield of VSis prepared by fs laser nanomachining.

Funder

National Natural Science Foundation of China

2020 Mobility Programme of the Sino-German Center for Research Promotion

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Materials Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3