Abstract
AbstractWe study the correlation between the nodal length of random spherical harmonics and the length of a nonzero level set. We show that the correlation is asymptotically zero, while the partial correlation after removing the effect of the random $$L^2$$
L
2
-norm of the eigenfunctions is asymptotically one.
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics
Reference31 articles.
1. Adler, R.J., Taylor, J.E.: Random Fields and Geometry, Springer Monographs in Mathematics. Springer, New York (2007)
2. Bérard, P.: Volume des Ensembles Nodaux des Fonctions Propres du Laplacien. Bony-Sjstrand-Meyer seminar, 1984–1985, Exp. No. 14 , 10 pp. École Polytech, Palaiseau (1985)
3. Cammarota, V., Marinucci, D., Wigman, I.: On the distribution of the critical values of random spherical harmonics. J. Geom. Anal. 4, 3252–3324 (2016)
4. Cammarota, V., Marinucci, D.: A quantitative central limit theorem for the Euler–Poincaré characteristic of random spherical eigenfunctions. Ann. Probab. 46(6), 3188–3228 (2018)
5. Cammarota, V., Marinucci, D.: A reduction principle for the critical values of random spherical harmonics. Stoch. Process. Appl. 130(4), 2433–2470 (2020)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献