Scattering in Quantum Dots via Noncommutative Rational Functions

Author:

Erdős László,Krüger Torben,Nemish YuriyORCID

Abstract

AbstractIn the customary random matrix model for transport in quantum dots with M internal degrees of freedom coupled to a chaotic environment via $$N\ll M$$ N M channels, the density $$\rho $$ ρ of transmission eigenvalues is computed from a specific invariant ensemble for which explicit formula for the joint probability density of all eigenvalues is available. We revisit this problem in the large N regime allowing for (i) arbitrary ratio $$\phi := N/M\le 1$$ ϕ : = N / M 1 ; and (ii) general distributions for the matrix elements of the Hamiltonian of the quantum dot. In the limit $$\phi \rightarrow 0$$ ϕ 0 , we recover the formula for the density $$\rho $$ ρ that Beenakker (Rev Mod Phys 69:731–808, 1997) has derived for a special matrix ensemble. We also prove that the inverse square root singularity of the density at zero and full transmission in Beenakker’s formula persists for any $$\phi <1$$ ϕ < 1 but in the borderline case $$\phi =1$$ ϕ = 1 an anomalous $$\lambda ^{-2/3}$$ λ - 2 / 3 singularity arises at zero. To access this level of generality, we develop the theory of global and local laws on the spectral density of a large class of noncommutative rational expressions in large random matrices with i.i.d. entries.

Funder

H2020 European Research Council

Hausdorff Center for Mathematics in Bonn

Villum Fonden

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3