A Converse to Lieb–Robinson Bounds in One Dimension Using Index Theory

Author:

Ranard Daniel,Walter Michael,Witteveen FreekORCID

Abstract

AbstractUnitary dynamics with a strict causal cone (or “light cone”) have been studied extensively, under the name of quantum cellular automata (QCAs). In particular, QCAs in one dimension have been completely classified by an index theory. Physical systems often exhibit only approximate causal cones; Hamiltonian evolutions on the lattice satisfy Lieb–Robinson bounds rather than strict locality. This motivates us to study approximately locality preserving unitaries (ALPUs). We show that the index theory is robust and completely extends to one-dimensional ALPUs. As a consequence, we achieve a converse to the Lieb–Robinson bounds: any ALPU of index zero can be exactly generated by some time-dependent, quasi-local Hamiltonian in constant time. For the special case of finite chains with open boundaries, any unitary satisfying the Lieb–Robinson bound may be generated by such a Hamiltonian. We also discuss some results on the stability of operator algebras which may be of independent interest.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics

Reference57 articles.

1. Margolus, N.: Quantum computation (1986)

2. Schumacher, B., Werner, R.F. Reversible quantum cellular automata. arXiv:quant-ph/0405174 (2004)

3. Lieb, E.H., Robinson, D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28(3), 251–257 (1972)

4. Po, H.C., Fidkowski, L., Morimoto, T., Potter, A.C., Vishwanath, A.: Chiral Floquet phases of many-body localized bosons. Phys. Rev. X 6(4), 041070 (2016)

5. Haah, J., Fidkowski, L., Hastings, M.B.: Nontrivial quantum cellular automata in higher dimensions (2018a) arXiv preprint arXiv:1812.01625

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3