Symmetries of Vacuum Spacetimes with a Compact Cauchy Horizon of Constant Nonzero Surface Gravity

Author:

Petersen OliverORCID,Rácz István

Abstract

AbstractWe prove that any smooth vacuum spacetime containing a compact Cauchy horizon with surface gravity that can be normalised to a nonzero constant admits a Killing vector field. This proves a conjecture by Moncrief and Isenberg from 1983 under the assumption on the surface gravity and generalises previous results due to Moncrief–Isenberg and Friedrich–Rácz–Wald, where the generators of the Cauchy horizon were closed or densely filled a 2-torus. Consequently, the maximal globally hyperbolic vacuum development of generic initial data cannot be extended across a compact Cauchy horizon with surface gravity that can be normalised to a nonzero constant. Our result supports, thereby, the validity of the strong cosmic censorship conjecture in the considered special case. The proof consists of two main steps. First, we show that the Killing equation can be solved up to infinite order at the Cauchy horizon. Second, by applying a recent result of the first author on wave equations with initial data on a compact Cauchy horizon, we show that this Killing vector field extends to the globally hyperbolic region.

Funder

National Research, Development and Innovation Office

H2020 Marie Sklodowska-Curie Actions

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics

Reference30 articles.

1. Alexakis, S., Ionescu, A., Klainerman, S.: Hawking’s local rigidity theorem without analyticity. Geom. Funct. Anal. 20(4), 845–869 (2010)

2. Bustamente, I., Reiris, M.: On the existence of Killing fields in smooth spacetimes with a compact Cauchy horizon. Class. Quant. Grav. 38, 7 (2021)

3. Fischer, A., Marsden, J., Moncrief, V.: The structure of the space of solutions of Einstein’ equations: I. One Killing field. Ann. Inst. H. Poincare 33, 147–194 (1980)

4. Friedrich, H., Rácz, I., Wald, R.: On the rigidity theorem for spacetimes with a stationary event horizon or a compact Cauchy horizon. Commun. Math. Phys. 204, 691–707 (1999)

5. Gurriaran, S., Minguzzi, E.: Surface gravity of compact non-degenerate horizons under the dominant energy condition. Commun. Math. Phys. 395, 679–713 (2022)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3