The Small-N Series in the Zero-Dimensional O(N) Model: Constructive Expansions and Transseries

Author:

Benedetti Dario,Gurau Razvan,Keppler HannesORCID,Lettera Davide

Abstract

AbstractWe consider the zero-dimensional quartic O(N) vector model and present a complete study of the partition function Z(gN) and its logarithm, the free energy W(gN), seen as functions of the coupling g on a Riemann surface. We are, in particular, interested in the study of the transseries expansions of these quantities. The point of this paper is to recover such results using constructive field theory techniques with the aim to use them in the future for a rigorous analysis of resurgence in genuine quantum field theoretical models in higher dimensions. Using constructive field theory techniques, we prove that both Z(gN) and W(gN) are Borel summable functions along all the rays in the cut complex plane $$\mathbb {C}_{\pi } =\mathbb {C}{\setminus } \mathbb {R}_-$$ C π = C \ R - . We recover the transseries expansion of Z(gN) using the intermediate field representation. We furthermore study the small-N expansions of Z(gN) and W(gN). For any $$g=|g| e^{\imath \varphi }$$ g = | g | e ı φ on the sector of the Riemann surface with $$|\varphi |<3\pi /2$$ | φ | < 3 π / 2 , the small-N expansion of Z(gN) has infinite radius of convergence in N, while the expansion of W(gN) has a finite radius of convergence in N for g in a subdomain of the same sector. The Taylor coefficients of these expansions, $$Z_n(g)$$ Z n ( g ) and $$W_n(g)$$ W n ( g ) , exhibit analytic properties similar to Z(gN) and W(gN) and have transseries expansions. The transseries expansion of $$Z_n(g)$$ Z n ( g ) is readily accessible: much like Z(gN), for any n, $$Z_n(g)$$ Z n ( g ) has a zero- and a one-instanton contribution. The transseries of $$W_n(g)$$ W n ( g ) is obtained using Möbius inversion, and summing these transseries yields the transseries expansion of W(gN). The transseries of $$W_n(g)$$ W n ( g ) and W(gN) are markedly different: while W(gN) displays contributions from arbitrarily many multi-instantons, $$W_n(g)$$ W n ( g ) exhibits contributions of only up to n-instanton sectors.

Funder

H2020 European Research Council

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Reference41 articles.

1. Écalle, J.: Les fonctions résurgentes. Vol. I-III, Université de Paris-Sud, Département de Mathématique, Orsay (1981)

2. Sauzin, D.: Resurgent functions and splitting problems. arXiv:0706.0137

3. Mariño, M.: Lectures on non-perturbative effects in large $$N$$ gauge theories, matrix models and strings. Fortsch. Phys. 62, 455 (2014). [arXiv:1206.6272]

4. Dorigoni, D.: An Introduction to Resurgence, Trans-Series and Alien Calculus. Annals Phys. 409, 167914 (2019). [arXiv:1411.3585]

5. Dunne, G.V., Ünsal, M.: What is QFT? Resurgent trans-series, Lefschetz thimbles, and new exact saddles. PoS LATTICE2015, 010 (2016). arXiv:1511.05977

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3