Abstract
AbstractLet $$H_0$$
H
0
be the free Dirac operator and $$V \geqslant 0$$
V
⩾
0
be a positive potential. We study the discrete spectrum of $$H(\alpha )=H_0-\alpha V$$
H
(
α
)
=
H
0
-
α
V
in the interval $$(-1,1)$$
(
-
1
,
1
)
for large values of the coupling constant $$\alpha >0$$
α
>
0
. In particular, we obtain an asymptotic formula for the number of eigenvalues of $$H(\alpha )$$
H
(
α
)
situated in a bounded interval $$[\lambda ,\mu )$$
[
λ
,
μ
)
as $$\alpha \rightarrow \infty $$
α
→
∞
.
Funder
University of North Carolina at Charlotte
Publisher
Springer Science and Business Media LLC
Reference31 articles.
1. Alama, S., Avellaneda, M., Deift, P., Hempel, R.: On the existence of eigenvalues of a divergence-form operator $$A+{\lambda }B$$ in a gap of $$\sigma (A)$$. Asympt. Anal. 8(4), 311–344 (1994)
2. Alama, S., Deift, P., Hempel, R.: Eigenvalue branches of the Schrödinger operator $$H-{\lambda }W$$ in a gap of $$\sigma (H_0)$$. Comm. Math. Phys. 121(2), 291–321 (1989)
3. Birman, M.Sh.: On the spectrum of singular boundary-value problems. Mat. Sb. (N.S.) 55(97), 125–174 (1961) (Russian), English translation in American Mathematical Society Translation, Series 2, 53, 23–80 (1966)
4. Birman, M.: Discrete spectrum in gaps of a continuous one for perturbations with large coupling constants. Adv. Sov. Math. 7, 57–73 (1991)
5. Birman, M., Laptev, A.: Discrete spectrum of the perturbed Dirac operator. Ark. Matematik 32(1), 13–32 (1994)