Abstract
AbstractThe extended algebra of the free electromagnetic fields, including infrared-singular fields, and the almost radial gauge, both introduced earlier, are postulated for the construction of the quantum electrodynamics in a Hilbert space (no indefinite metric). Both the Dirac and electromagnetic fields are constructed up to the first order (based on the incoming fields) as operators in the Hilbert space and shown to have physically well-interpretable asymptotic behavior in far past and spacelike separations. The Dirac field tends in far past to the free incoming field, carrying its own Coulomb field, but with no ‘soft photon dressing.’ The spacelike asymptotic limit of the electromagnetic field yields a conserved operator field, which is a sum of contributions of the incoming Coulomb field, and of the low-energy limit of the incoming free electromagnetic field. This should agree with the operator field similarly constructed with the use of outgoing fields, which then relates these past and future characteristics. Higher orders are expected not to change this picture, but their construction needs a treatment of the UV question, which has not been undertaken and remains a problem for further investigation.
Publisher
Springer Science and Business Media LLC