Abstract
AbstractTwo classes of interacting particle systems on $$\mathbb {Z}$$Z are shown to be Pfaffian point processes, at any fixed time and for all deterministic initial conditions. The first comprises coalescing and branching random walks, the second annihilating random walks with pairwise immigration. Various limiting Pfaffian point processes on $$\mathbb {R}$$R are found by diffusive rescaling, including the point set process for the Brownian web and Brownian net.
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics
Reference18 articles.
1. Alcaraz, F.C., Droz, M., Henkel, M., Rittenberg, V.: Reaction-diffusion processes, critical dynamics, and quantum chains. Ann. Phys. 230(2), 250–302 (1994)
2. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge University Press, Cambridge (2010)
3. Borodin, A.N., Salminen, P.: Handbook of Brownian Motion-facts and Formulae. Birkhäuser, Basel (2012)
4. Csörgő, M., Révész, P.: On strong invariance for local time of partial sums. Stoch. process. their Appl. 20(1), 59–84 (1985)
5. Felderhof, B.U.: Reports on mathematical physics, 1:215, and (1971), 2:151–152 (1970)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献