Abstract
AbstractIn 2017, Lienert and Tumulka proved Born’s rule on arbitrary Cauchy surfaces in Minkowski space-time assuming Born’s rule and a corresponding collapse rule on horizontal surfaces relative to a fixed Lorentz frame, as well as a given unitary time evolution between any two Cauchy surfaces, satisfying that there is no interaction faster than light and no propagation faster than light. Here, we prove Born’s rule on arbitrary Cauchy surfaces from a different, but equally reasonable, set of assumptions. The conclusion is that if detectors are placed along any Cauchy surface $$\Sigma $$
Σ
, then the observed particle configuration on $$\Sigma $$
Σ
is a random variable with distribution density $$|\Psi _\Sigma |^2$$
|
Ψ
Σ
|
2
, suitably understood. The main different assumption is that the Born and collapse rules hold on any spacelike hyperplane, i.e., at any time coordinate in any Lorentz frame. Heuristically, this follows if the dynamics of the detectors is Lorentz invariant.
Funder
Wilhelm Schuler-Stiftung Tübingen
Deutscher Akademischer Austauschdienst
Eusko Jaurlaritza
Ministerio de Ciencia, Innovación y Universidades
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics
Reference38 articles.
1. Ballesteros, M., Benoist, T., Fraas, M., Fröhlich, J.: The appearance of particle tracks in detectors. Commun. Math. Phys. 385: 429-463 (2021) arXiv:2007.00785
2. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964)
3. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press (1987)
4. Bloch, F.: Die physikalische Bedeutung mehrerer Zeiten in der Quantenelektrodynamik. Phys. Z. Sowjetunion 5, 301–305 (1934)
5. Deckert, D.-A., Merkl, F.: External field QED on Cauchy surfaces for varying electromagnetic fields. Commun. Math. Phys. 345, 973–1017 (2016). arxiv: 1505.06039
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献