Abstract
AbstractWe consider a system of N bosons, in the two-dimensional unit torus. We assume particles to interact through a repulsive two-body potential, with a scattering length that is exponentially small in N (Gross–Pitaevskii regime). In this setting, we establish the validity of the predictions of Bogoliubov theory, determining the ground state energy of the Hamilton operator and its low-energy excitation spectrum, up to errors that vanish in the limit $$N \rightarrow \infty $$
N
→
∞
.
Funder
H2020 European Research Council
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics
Reference37 articles.
1. Adhikari, A., Brennecke, C., Schlein, B.: Bose-einstein condensation beyond the gross-Pitaevskii regime. Ann. Henri Poincaré 22, 1163–1233 (2021)
2. Andersen, J.O.: Ground state pressure and energy density of an interacting homogeneous Bose gas in two dimensions. Eur. Phys. J. B 28, 389 (2002)
3. Basti, G., Cenatiempo, S., Olgiati, A., Pasqualetti, G., Schlein, B.: A second order upper bound for the ground state energy of a hard-sphere gas. Commun. Math. Phys. 5, 89 (2022)
4. Benedikter, N., de Oliveira, G., Schlein, B.: Quantitative derivation of the Gross-Pitaevskii equation. Commun. Pure Appl. Math. 68(8), 1399–1482 (2014)
5. Bishop, D.J., Reppy, J.D.: Study of the superfluid transition in two-dimensional 4He films. Phys. Rev. Lett. 40(26), 89 (1978)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献