Abstract
AbstractWe define and analyze the fermionic entanglement entropy of a Schwarzschild black hole horizon for the regularized vacuum state of an observer at infinity. Using separation of variables and an integral representation of the Dirac propagator, the entanglement entropy is computed to be a prefactor times the number of occupied angular momentum modes on the event horizon.
Funder
Studienstiftung des Deutschen Volkes
Publisher
Springer Science and Business Media LLC
Reference39 articles.
1. Ashtekar, A., Baez, J.C., Krasnov, K.: Quantum geometry of isolated horizons and black hole entropy,. Adv. Theor. Math. Phys. 4(1), 1–94 (2000)
2. Bekenstein, J.D.: Statistical black hole thermodynamics. Phys. Rev. D 12, 3077–3085 (1975)
3. Birman, M.Sh., Karadzhov, G.E., Solomjak, M.Z.: Boundedness conditions and spectrum estimates for the operators $$b(X)a(D)$$ and their analogs, Estimates and asymptotics for discrete spectra of integral and differential equations (Leningrad, 1989–90), Adv. Soviet Math., vol. 7, Amer. Math. Soc., Providence, RI, pp. 85–106 (1991)
4. Birman, M.S., Solomjak, M.Z.: Estimates for the singular numbers of integral operators. Uspehi Mat. Nauk 32(1(193)), 17–84, 271 (1977)
5. Birman, M.Sh., Solomjak, M.Z.: Spectral theory of selfadjoint operators in Hilbert space, Mathematics and its Applications (Soviet Series), D. Reidel Publishing Co., Dordrecht, 1987, Translated from the 1980 Russian original by S. Khrushchëv and V. Peller
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献