Positive Measure of Effective Quasi-Periodic Motion Near a Diophantine Torus

Author:

Bounemoura Abed,Farré GerardORCID

Abstract

AbstractIt was conjectured by Herman that an analytic Lagrangian Diophantine quasi-periodic torus $${\mathcal {T}}_0$$ T 0 , invariant by a real-analytic Hamiltonian system, is always accumulated by a set of positive Lebesgue measure of other Lagrangian Diophantine quasi-periodic invariant tori. While the conjecture is still open, we will prove the following weaker statement: there exists an open set of positive measure (in fact, the relative measure of the complement is exponentially small) around $${\mathcal {T}}_0$$ T 0 such that the motion of all initial conditions in this set is “effectively” quasi-periodic in the sense that they are close to being quasi-periodic for an interval of time, which is doubly exponentially long with respect to the inverse of the distance to $${\mathcal {T}}_0$$ T 0 . This open set can be thought of as a neighborhood of a hypothetical invariant set of Lagrangian Diophantine quasi-periodic tori, which may or may not exist.

Funder

Vetenskapsrådet

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics

Reference23 articles.

1. Arnold, V.I.: Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian. Uspehi Mat. Nauk 18, 13–40 (1963)

2. Birkhoff, G.: Dynamical Systems. American Mathematical Society, Providence (1966)

3. Bounemoura, A., Fayad, B., Niederman, L.: Superexponential stability of quasi-periodic motion in Hamiltonian systems. Commun. Math. Phys. 350(1), 361–386 (2017)

4. Bounemoura, A., Fayad, B., Niederman, L.: Super-exponential stability for generic real-analytic elliptic equilibrium points. Adv. Math. 366, 107088 (2020)

5. Bruno, A.: Analytical form of differential equations I. Trans. Moscow Math. Soc. 25, 131–288 (1971)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3